
e u r o p e a n j o u r n a l o f p a e d i a t r i c n e u r o l o g y 1 4 ( 2 0 1 0 ) 3 8 0e3 9 0
Official Journal of the European Paediatric Neurology Society
Review article

Long-term sleep disturbances in children: A cause
of neuronal loss
James E. Jan a,b,*, Russ J. Reiter c, Martin C.O. Bax d, Urs Ribary e,
Roger D. Freeman f,g, Michael B. Wasdell h

aPediatric Neurology and Developmental Pediatrics, University of British Columbia, BC, Canada
bChild and Family Research Institute and BC Children’s Hospital, Vancouver, BC, Canada
cDepartment of Cellular and Structural Biology, University of Texas Health Sciences Center, San Antonio, TX, USA
dChild Health, Chelsea and Westminster Campus, Imperial College, London, UK
eCognitive Neurosciences in Child Health and Development, Behavioural and Cognitive Neuroscience Institute, Simon Fraser University,

Burnaby, BC, Canada
fDepartment of Psychiatry, University of British Columbia, BC, Canada
gNeuropsychiatry Clinic, BC Children’s Hospital, Vancouver, BC, Canada
hBC Children’s Hospital, Vancouver, Fraser Health Authority, Surrey, BC, Canada
a r t i c l e i n f o

Article history:

Received 25 July 2009

Received in revised form

1 May 2010

Accepted 5 May 2010

Keywords:

Children

Sleep deprivation

Cellular stress

Intellectual loss

Melatonin
Abbreviations: fMRI, functional magnetic r
NREM, non-rapid eye movement; REM, rapid
* Corresponding author. BC Children’s Hos

Tel.: þ1 604 875 2124; fax: þ1 604 875 2656.
E-mail address: jjan@cw.bc.ca (J.E. Jan).

1090-3798/$ e see front matter ª 2010 Europ
doi:10.1016/j.ejpn.2010.05.001
a b s t r a c t

Short-term sleep loss is known to cause temporary difficulties in cognition, behaviour

and health but the effects of persistent sleep deprivation on brain development have

received little or no attention. Yet, severe sleep disorders that last for years are common

in children especially when they have neurodevelopmental disabilities. There is

increasing evidence that chronic sleep loss can lead to neuronal and cognitive loss in

children although this is generally unrecognized by the medical profession and the

public. Without the restorative functions of sleep due to total sleep deprivation, death is

inevitable within a few weeks. Chronic sleep disturbances at any age deprive children of

healthy environmental exposure which is a prerequisite for cognitive growth more so

during critical developmental periods. Sleep loss adversely effects pineal melatonin

production which causes disturbance of circadian physiology of cells, organs, neuro-

chemicals, neuroprotective and other metabolic functions. Through various mechanisms

sleep loss causes widespread deterioration of neuronal functions, memory and learning,

gene expression, neurogenesis and numerous other changes which cause decline in

cognition, behaviour and health. When these changes are long-standing, excessive

cellular stress develops which may result in widespread neuronal loss. In this review, for

the first time, recent research advances obtained from various fields of sleep medicine
esonance imaging; MEG, magnetoencephalography; NDD, neurodevelopmental disabilities;
eye movement.
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are integrated in order to show that untreated chronic sleep disorders may lead to

impaired brain development, neuronal damage and permanent loss of developmental

potentials. Further research is urgently needed because these findings have major

implications for the treatment of sleep disorders.

ª 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights

reserved.
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1. Introduction One of the anecdotal total long-term sleep deprivation
Recent research activities in various fields of sleep medicine

force us to view the wakeesleep states as an interrelated and

orchestrated change in behavioural, cognitive, genetic,

anatomical, electrical, molecular, cellular, biochemical, and

endocrine functions in which the pineal melatonin plays an

important role.1 Viewing sleep as a complex, neurological

process rather than an independent state promotes better

understanding of sleep disorders and their adverse effects on

cognition, behaviour and health. The purpose of this review is

to discuss the neuronal, metabolic and other mechanisms of

sleep, based on recent scientific advances; then to summarise

and integrate the evidencewhich supports the hypothesis that

in childhood chronic sleep deprivation can lead to permanent

neurological damage especially during early critical develop-

mental periods. Sleep deprivation is generally defined in sleep

medicine as sufficient loss of sleep during a period of time

which results in impairment of neurological and physical

functions. Sleep deprivation not only depends on the quantity

but also on the restorativequality and timingof sleep. Children

require more sleep than adults with individual variations.

Sleep deprivation can be short or long-term, partial or total.

Short-term sleep deprivation could be caused by loss of a few

hours of sleep. It ismoredifficult to define chronic or long-term

partial sleep loss but in clinical practice children with neuro-

developmental disabilities frequently exhibit persistent sleep

disturbances with inadequate hours of sleep for years or even

lifetime. Partial and also total short-term sleep loss has been

studiedmainly inanimals, less frequently inhealthyadultsbut

only on rare occasions in children.2e4 Research on the perma-

nent adverse effects of sleep loss on neurodevelopment is still

minimal.5 There are no controlled studies in children, which is

not surprising as such experiments are unethical to perform,

due to adverse psychological and medical consequences.
experiments involved a top radio personality, Peter Tripp,who

in 1959wanted to break the world record for staying awake for

the longest period of time. He succeeded in breaking the

record by staying awake for 201 h but became psychotic

towards the end of his ordeal. Following this event, those close

to him felt that his personality had permanently changed. He

lost his job, had difficulties settling and hiswife divorcedhim.6

Since then others have broken the world record for staying

awake but all of them had serious cognitive and behavioural

changes during their attempts. The long-term neurological

and psychological consequences were not studied. The

experiment of Peter Tripp illustrates the critical importance of

sleep for survival. Indeed, complete lack of sleep in animal

experiments leads to death within 3 weeks.7,8

In typically developing children, with exceptions, the sleep

difficulties tend tobe partial, short termand respond favourably

to appropriate management.9 In contrast, in children with

neurodevelopmental disabilities (NDD) the prevalence rates of

sleep difficulties may be as high as 75e80% and the sleep

disturbances tend to last for years or even for a lifetime. While

they can be helped by therapies or environmental changes they

may respond less readily than typical children.10e12 Sleep

disturbances are associatedwithmanyneurological conditions,

alone or in combinations, such as intellectual disability,13

epilepsy,14 cerebral palsy,15 visual impairment,16 autism,17

attention deficit hyperactivity disorder,18 fetal alcohol spec-

trumdisorders19 andbrainmaldevelopment.20 Not infrequently

such children only sleep for 3e4 h a night for years or for their

entire lives. The number of coexisting neurological disorders

and their severity proportionately predispose to disturbed

sleep.21Untreated sleepdeprivationmay lead todeteriorationof

the already impaired brain functions as evidenced by increased

difficulties in learning, memory, verbal creativity, attention,

abstract reasoning and many other perceptual, cognitive and
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motor functions.22e24 Sleep problems are more common in

remedial classes for childrenwith various forms of NDD than in

primary schools.23,25 In children with obstructive sleep apnea

the degree of sleep disturbance and the severity of intellectual

and behavioural changes are strongly linked. For example,

among first grade students with the lowest marks, there was

a 6e9-fold increase in the expected prevalence of sleep apnea.26

Thus, the possibility exists that a vicious cycle may be created

which feeds back to itself as sleep disorders in children with

NDD lead to increasingly impaired cognition and further dete-

rioration of sleep.

The three most common sleep disturbances in children

with NDD are difficulties falling asleep, frequent awakenings

during the night and early morning arousals alone or in

combinations. Although diagnostic sleep studies in the NDD

population are scarce, these sleep disturbances are generally

considered to be circadian rhythm sleep disorders and they

tend to be associated with abnormally timed, or reduced

pineal melatonin production and secretion.27 When sleep

disorders are appropriately treated, even after years of delay,

caregiver reports show that there is significant improvement

in intellectual function, behaviour and health.28 However,

a strong possibility still exists that the delay in treatment

adversely affects the ultimate intellectual potentials of these

children. Chronic sleep deprivation may occur at any age, but

the adverse consequences are much more likely to occur in

younger children, whose immature brains are rapidly devel-

oping in contrast to adults with mature central nervous

systems.
2. Critical developmental periods

Our sensory systems respond to environmental information

by transducing it to electrical activity in the brain. The vast

number of neuronal groups, ‘modules’ or ‘assemblies’, also

communicates by means of electrical oscillations. Because of

environmental exposure during development, competition

occurs between neuronal assemblies which results in the

creation of neural pathways and anatomical regions respon-

sible for later cognition andmature behaviour. The timing and

duration of environmental exposure, motivation, attention to

tasks and age are some of the important influencing factors.

Neurodevelopment occurs in cascades as each step is built on

a preceding stage. The durations of the huge number of critical

periods are still unclear and they vary according to specific

motor and cognitive abilities. During these critical times the

synaptic activity exhibits the highest level of plasticity and

connectivity which are the cellular substrate of memory

formation and learning. Children’s neurological circuits are

particularly receptive to acquiring information. They respond

quickly to genetic and environmental information but are also

more susceptible to damage.7,29 The developmental steps are

accompanied by electrical, functional, structural, neuro-

transmitter, neuromodulator, biochemical, hormonal and

other physiological changes.29 The best example to illustrate

the existence of high susceptibility to damage during critical

developmental periods is fetal alcohol spectrum disorders,

because even small amounts of alcohol during pregnancymay

have devastating teratogenic effects on the central nervous
system of the fetus in contrast to alcohol exposure in adults

who have mature nervous systems.30
3. Electrical activity of the brain

The purpose of this section is to describe the electrical

changes in sleep and relate these to brain functions, sleep

disturbances and development. The global electrical activity

of the brain is the summation of oscillatory frequencies

betweenmyriads of neuronal modules. In both mammals and

humans, these frequencies and patterns are very different in

wakefulness, drowsiness and in certain sleep stages.31 Based

on these and clinical differences, sleep patterns in the elec-

troencephalogram (EEG) are divided into two major compo-

nents: rapid eye movement (REM) and non-rapid eye

movement (NREM) states and they are further divided into sub

stages. Furthermore, NREM and REM sleep cyclically alternate

during the night. The brain is much more active in REM than

in NREM states. In REM sleep the cortical blood flow and

oxygen delivery are high, especially in the brainstem and

limbic regions and EEGs show intense neuronal firing in most

areas of the brain. In all mammals the duration of REM sleep is

much higher during early development than later in life and

parallels the rate of cognitive development which indicates

the need for healthy sleep.32,33

A healthy exposure to the environment is important

because neuronal development is stimulus-dependent.34

Contact with the environment is transduced into electrical

activity which represents the critically needed exogenous

stimulus. Neurons also receive endogenous stimulation

provided by the intense electrical communication between

neuronal assemblies especially during REM sleep.35e38 Roff-

warg and co-workers were the first to suggest that the primary

purpose of REM was the promotion of brain development.39

Exogenous and endogenous stimulation influences neuro-

genesis, synaptic activity, connectivity and assists in learning

and memory formation. In animals, persistent REM sleep

deprivation leads to increased energy expenditure, weight

loss in spite of higher food intake, decreased body tempera-

ture, debilitating appearance and death.8 Chronic REM sleep

deprivation leads to increased programmed cell death

(apoptosis), smaller brain size and it also limits cerebral

maturation resulting from environmental enrichment.40e42

The development of thalamocortical and intracortical

patterns of innervations between neuronal groups is also

reflected in the maturation of NREM sleep and corresponds to

the height of synaptic remodelling in early life.43 In early

NREM sleep spindle formation has been considered to be

a marker for neuronal plasticity and consolidation of new

procedural learning. Sleep spindle formation, a pattern of

electrical oscillations, is often abnormal in children with NDD

and with structural brain abnormalities while the increased

number of spindles have been correlated with higher perfor-

mance IQ.43 However, it is now apparent that the main role of

spindles is the induction and maintenance of NREM sleep.1

Spindle activity prepares the brain for sleep globally and

regionallywhile taking into consideration the level of previous

sensory input as spindle activity is more active over areas of

the cortex that have received stimulation prior to sleep.44
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During deeper NREM sleep the spindles gradually disappear

and in its deepest stages, the electrical pattern of the EEG is

characterised by diffuse slowing, similar to encephalopathy

due to pathological conditions which have resulted in cortical

deactivation.

Recent research advances in cellular studies show that

sleep is physiologically required by individual groups on

neurons which is a very important observation.45 This is even

evident when the electrical oscillations of neurons are ana-

lysed in slide preparations of the brain as the recorded slow

oscillatory activities are similar to the brain waves during

NREM sleep.46 However, central mechanisms are critically

important for modulating and synchronizing sleep states in

all regions of the brain. The radically different electrical

patterns in NREM and REM sleep stages suggest different

functions. NREM sleep is likely to play an important metabolic

role in correcting the energy and nutritional imbalances

following prolonged wakefulness while REM sleep is more

important for providing a supportive role for endogenous

stimulation, neurogenesis, neurological and emotional

development, memory formation and learning. Clearly, there

is increasing evidence from studying the electrical activity of

the brain that sleep disturbances can influence neuronal

development and function.
4. Homeostatic mechanisms in sleep

During early sleep research, Borbely introduced theories

explaining the influence of circadian and homeostatic mech-

anisms on sleep.47 He suggested that the circadian rhythm

oscillators in the suprachiasmatic nuclei of the hypothalamus

control the sleepewake cycles and the homeostatic process

regulates sleep need, which increases during the day and

decreases during NREM sleep. It was hypothesized that the

accumulation of one or more unknown substances in the

brain during the waking hours were responsible for this

homeostatic process. Research has since shown that prosta-

glandin D2, adenosine, nitric oxide, tumour-releasing factor,

interleukin-1 and growth hormone releasing hormone and

other substances are these homeostatic sleep-inducing

factors.45,48,49 For example, prostaglandin D2, a local

hormone, and adenosine, a purine nucleoside energy regu-

lator, accumulate in the brain during wakefulness, especially

in the forebrain structures, and they promote sleep. During

NREM sleep adenosine moves into the cells and serves as

a fuel supply in the mitochondria. When prostaglandin D2

was continuously infused into the third ventricle of rats, it

inducedNREM and REM sleep in a dose-dependentmanner, as

judged by EEG studies and behavioural observations.50 When

adenosine was perfused into rats in another study, it

produced impairment of vigilance resembling the effects of

sleep deprivation.51 With longer sleep deprivation, the accu-

mulation of sleep regulatory substances increases and with it,

the need for sleep.45,52 During neuronal activities, the brain

uses other energy sources such as glycogen, which is

primarily stored in astrocytes.53,54 Astrocytes have a role in

the regulation of the pre-and post-synaptic terminals of

excitatory and inhibitory synapses55 and play an important

role in the energy regulation of sleep homeostasis by releasing
transmitters at receptor sites. They also have a role in cogni-

tive decline during sleep loss.56 Key protein levels in central

synapses are high after waking and low after sleep indicating

their strong homeostatic role in sleep.57

Sleep is not imposed on the brain by a single regulatory

circuit which acts in a top-down manner. Depending on

previous use, when regional neuronal groups require their

own metabolic restoration, they are able to release sleep-

promoting substances that may induce local NREM sleep.45

When the homeostatic needs of local brain regions are

unmet, their synaptic efficacy and connectivity are affected,

which homeostatic imbalance then adversely influences the

related cognitive functions, behaviours and learning. Sleep

states normally require close interactions between local

neuronal circuits and central mechanisms in order to avoid

conflicting functions between various brain regions. As an

example, after severe sleep deprivation microsleeps and lap-

ses in attention commonly occur due to impaired interactions

between central and local mechanisms.58 In conclusion, it is

again clear that temporary or persistent sleep disturbances

can adversely affect brain functions both globally and locally

at the cellular level.
5. Imaging studies

Neurons dynamically create oscillating electrical currents and

induce corresponding magnetic fields which process requires

large amount of energy. Depending on the types of functions

performed during testing different regions of the brain are

activated. Functional magnetic resonance imaging (fMRI) and

positron emission tomography techniques detect these

changes because of the underlying metabolic and hemody-

namic responses. The generated electrical activity and the

correspondingmagnetic fields can also be studied by EEGs and

magnetoencephalography (MEG) respectively. When these

techniques are combined the visualization of functional

activities in the brain is even more enhanced.

MRI studies in children showmarked growth of the brain in

the first two years of life, mainly due to grey matter develop-

ment.59 Structural and fMRI studies offer new insights into the

mechanisms of sleep and the anatomical structures

involved.60,61 They are valuable tools in the understanding,

diagnosis and treatment of specific sleep disorders.62 They

also shed light on how sleep deprivation can change neuro-

anatomical functions58,63 and how the brain compensates for

sleep loss.5 Imaging studies have revealed decreased func-

tional connectivity between the amygdala and medial

prefrontal region following short-term sleep loss, but

increased connectivity between the amygdala and autonomic

activating centres in the brainstem. These findings help to

explain emotional changes following sleep deprivation.64

Imaging studies have shown reduced cerebral metabolism

and also greymatter loss in cortical and subcortical structures

associated with persistent obstructive sleep apnea.64,65 Chil-

dren with obstructive sleep apnea have more frequent EEG

abnormalities compared to those without.66 One may argue

that the associated hypoxic episodes caused the brain damage

in these children. However, in another important study adults

with chronic primary insomnia and without comorbidities
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were assessed by neuroimaging. Altena and colleges studied

the brain volumes of 24 adults with chronic primary insomnia

and 13 matched control subjects. The patients with sleep

disturbances had significantly smaller greymatter volumes of

the orbitofrontal and parietal cortex and a few other areas

than the controls.67 The cerebral cortex is not affected evenly

by the process of sleep. In the early stages of NREM sleep the

thalamus and the frontal and parietal lobes show reduced

activity. In deeper NREM sleep stages the activity is further

reduced in these regions and also in the basal ganglia and

hippocampal structures. In contrast, the activity in REM sleep

increases in the pons, limbic system and occipital regions but

decreases in the parietal and prefrontal areas. Thus, fMRI

confirms the existing knowledge of sleep physiology derived

from other fields of sleep medicine. It shows that there is not

a single superstructure for inducing sleep but a complex,

widespread neurological network which operates between

central and local neuronal structures.60e62,68

A useful way to study the neuronal mechanisms involved

in sleep is to observe imaging changes inwakefulness, in sleep

and following sleep deprivation. A number of fMRI studies

have revealed the neuroanatomical correlates of impaired

performance following sleep loss. Working memory is

perhaps the most investigated cognitive function.69 The

others are verbal learning,70 decision making, emotional

responses71 and attention.64,72 Research into lapses of atten-

tion in individuals with sleep loss reveals interacting mecha-

nisms in the brain that at the same time promotewakefulness

and involuntary sleep.72 Emotional events enhance memory

formation by the influence of the amygdala on hippocampal

structures. In sleep-deprived individuals the recollections of

emotionally negative events elicit larger responses in the

amygdala and occipital areas.71 It is clear that there are indi-

vidual differences in vulnerability to sleep loss. In contrast to

partial sleep loss, we are not aware of human fMRI studies

following severe total or chronic partial sleep deprivation.

These studies are summarised in review articles.63,73

MEG studies also display changes in areas of the brain

during wakefulness, in different sleep states or following

sleep deprivation and are able to show an accurate spatio-

temporal localization of specific cognitive functions.74 MEG is

based on detecting magnetic oscillations created by the elec-

trical activity of the brain. The magnetic oscillatory activity in

the range of 25e50 Hz (gamma-band frequencies) has been

shown to be correlated with higher brain functions and thus

the dysrhythmic sensory processing present in various

neurological and psychiatric disorders can be revealed.75e81

The thalamocortical neuronal network has a major role in

wakefulness and sleep.1,74,82,83 During wakefulness and REM

the specific gamma thalamocortical resonance is active indi-

cating that cognitive experiences can be generated in both

states. In various brain disorders the oscillatory communica-

tion between the thalamus and cortex has been reported to be

disturbed and this thalamocortical dysrhythmia can also be

a contributing factor to impaired sleep states.75 Specific

neurological changes in various sleep stages can be detected

by MEG techniques.84,85 While the wake state and REM sleep

are similar in respect to the presence of gamma oscillations,

there is an absence of any external sensory input during REM

in contrast to wakefulness.86 During deeper stages of NREM
sleep, the amplitude of slow wave oscillations is higher than

in wakefulness and REM sleep, but again, external environ-

mental stimulation does not reset or change gamma oscilla-

tions. This means, as is already well known, that the external

environment is for the most part excluded during REM and

deep NREM sleep. Therefore, dreaming during REM is char-

acterised by increased attentiveness to the intrinsic state but

external stimuli do not influence the intrinsic activity. In

conclusion, MEG brain imaging technology has a potential

application in the study of all sleep disorders and sleep

deprivation. Furthermore, MEG and other imaging studies

have significantly increased our understanding the neuro-

logical processes involved in sleep and also changes in brain

functions following short-term and chronic sleep loss.
6. Cellular stress during sleep deprivation

The most convincing evidence for permanent neuronal

damage resulting from sleep loss comes from cellular studies

in which animal experiments are indispensable. There is

increasing evidence that even brief periods of total sleep

deprivation may permanently imprint on neuronal plasticity.

Forexample,duringcriticaldevelopmentalperiods theadverse

effects of sleep loss on the visual system have been clearly

shown.87 Occlusion of one eye causes rapid remodelling of the

visual cortex and its pathways. Sleep enhances neuronal

plasticity while sleep loss reduces it, therefore experience-

dependent (exogenous) stimulation can be modified.88

The effects of sleep deprivation on the neurophysiologic

functions of neurons can be clarified by gene expression. Up-

regulation of genes is different in wakefulness, sleep and

during sleep deprivation. Microarray analysis of the mouse

brain has shown that over 2000 genes are turned on or off

during sleep and wakefulness and some of these genes are

essential for restorative neuronal metabolisms. When certain

genes are activated by sleep deprivation or abnormal

sleepewake cycles, adverse changes may occur in neuro-

development and behaviour, especially in young children.89

Since some of these genes are coded for proteins which are

involved in different neuronal functions, the metabolic

aspects of waking, sleep and sleep deprivation can be reliably

studied by gene expression.90e92

During the last decade major progress has been made in

the understanding of complex molecular changes following

sleep deprivation which cause cellular stress.8,90,91 Cellular

stress is defined as the response of cells to adverse environ-

mental conditions that disturb their homeostasis. During

wakefulness, the brain’s energy supplies progressively

diminish while in NREM sleep this metabolic energy imbal-

ance is corrected by rebuilding the diminished cellular

components.93e95 When the metabolic needs of the neurons

are unmet, various degrees of cellular stress develop

depending on the severity and duration of sleep of loss.

Cellular stress down-regulates many so-called stress genes

and up-regulates many others and the activation of these

genes can lead to the production of certain proteins which are

able to protect and repair cells. Interestingly this process is

similar from bacteria to humans.



e u r o p e a n j o u r n a l o f p a e d i a t r i c n e u r o l o g y 1 4 ( 2 0 1 0 ) 3 8 0e3 9 0 385
Under non-stressed conditions the non-productive folding

of proteins in cells is prevented. During excessive stress this

process may fail, the misfolded proteins begin to accumulate

in aggregates and the adaptive cellular functions progres-

sively deteriorate. Excessive cellular stress can lead to path-

ological changes in the mitochondria, macromolecular

damage to proteins, DNA, RNA and lipids.90,96 and to alter-

ations of brain microRNA levels.97 In response to significant

cellular stress, the so-called unfolded protein response which

is a quality control system is initiated, that degrades mis-

folded polypeptides, suppresses the formation of protein

aggregates, and ensures the effectiveness of transcription and

translation of genes in addition to a number of other complex

mechanisms. This process occurs in the endoplasmic retic-

ulum, which is a membrane network in the cytoplasm.98,99

When the excessive stress is prolonged, and the unfolded

protein response is unable to compensate, widespread

neuronal death and apoptosis may occur. The wear and tear

resulting from stress, the “allostatic load”, is cumulative and

further influences neurological functions, behaviour and

health.100e102 In addition to sleep loss, neuronal stress may

have other simultaneous sources with an amplifying effect.

For example, it is estimated that 5e20% of military personnel

who have served in combat develop post-traumatic stress

disorder. Sleep disturbances appear to be a predisposing

factor but there are other simultaneous sources of stress. The

continuing sleep difficulties are a consistent feature of this

disorder.103 Post-traumatic stress disorder also occurs in

children with NDD but is rarely recognized.104

As indicated earlier, the metabolic cellular functions are

controlled by a very large number of genes that are up and

down regulated by the day and night changes.98,105 Severe and

long-term sleep deprivation is known to up-regulate genes in

the cerebral cortex coding for immunoglobulins, energy

regulating pathways, macromolecule biosynthesis and

transport, stress response and inflammation.93,94,98 Thus,

sleep deprivation and resulting neuronal stress may lead to

a large number of biochemical changes through various

mechanisms.91 Even short-term sleep deprivation rapidly and

reversibly alters bidirectional synaptic plasticity106 and it may

result in transcriptional alterations in protein synthesis.107

Changes also occur in the neuroendocrine108,109 and neuro-

transmitter systems.102 Interestingly, the pattern of neurobi-

ological changes is similar to that seen in depression.110 This

is relevant in that chronic sleep deprivation may be

a precursor of depression. As an example, adolescents have

high rates of serious sleep disturbances associated with

depression and suicidal attempts.111 Severe restless legs

syndrome predisposes to sleep disturbances and depres-

sion.112 Post-partum depressed women are also commonly

sleep-deprived.113 However, the relationship of sleep loss to

depression in these examples needs further clarification.
7. The effects of sleep deprivation on
the hippocampus

The hippocampal structures play a major cognitive role and

have received considerable attention with regard to sleep

deprivation. They participate in learning and memory
formation through reciprocal connections to various regions

of the brain and also in emotional processes involving the

amygdala and prefrontal cortex. The hippocampal formation

is in the medial temporal lobe and includes the dentate gyrus,

the hippocampus and a number of other areas that can be

clearly identified at birth. During post-natal maturation of

these structures, critical developmental periods exist.114 In

primates the majority of neurons are already formed pre-

natally except in the granular cell layer of the dentate gyrus

where more than 30% of neurons are generated post-natally,

most in early life, but some even in adulthood.115 Damage to

the hippocampal structures causes profound loss of declara-

tive memory function and cognitive deficits. Hippocampal

infarction,116 hippocampal sclerosis,117,118 pre-natal alcohol

exposure119 and various types of early injuries to the hippo-

campus120 all result in cognitive defects. During the early

post-natal developments of birds, nutritional deficits have

resulted in smaller hippocampal structures and fewer

neurons. These birds exhibited persistent cognitive deficits

despite nutritional rehabilitation.121 Deprived rearing condi-

tions in neonatal mice led to similar findings.122

Long-term sleep deprivation in animal studies has also

suppressed the survival, maturation, differentiation and

proliferation of neurons in the hippocampal structures.123

Therefore, periodic severe disruption of sleep may have

a permanent and cumulative effect in this anatomical

region114,124 and REM deprivation is more harmful in this

process than that of NREM sleep.125 The adverse effect of REM

sleep loss in memory function has been described in

numerous studies. McDermott and co-workers have shown

that only 72 h of REM sleep deprivation in rats impaired their

performance on hippocampus-dependent spatial learning

and produced molecular and cellular alterations. A reduction

in membrane excitability and synaptic plasticity diminished

the performance of these rodents in learning and tasks.126 In

animals and in humans, complex task training leads to an

increase in the consecutive total REM sleep time.127 In

humans, recall performance for verbal memory is greater

after sleep than after wakefulness and positron emission

tomography shows that in REM sleep, the brain areas aremore

reactive when they are exposed to certain learning tasks prior

to sleep.128 In conclusion, research indicates a detrimental

role of short-term or chronic sleep loss on consolidating

memory129 and there are suggestions that such changes can

be permanent.
8. Melatonin

The daily variations of light are transduced into electrical

impulses by specialized retinal ganglion cells which then

communicate this information to the suprachiasmatic nuclei

in the hypothalamus.130 In turn, the suprachiasmatic nuclei

signal the pineal gland to down-regulate the melatonin

production.131 In the absence of light the pineal gland is

relieved of the inhibitory influence of the suprachiasmatic

nuclei and melatonin production occurs with its rapid release

into the blood and cerebrospinal fluid. The circulating mela-

tonin is mainly but not entirely derived from the pineal gland.

Normally melatonin production begins in the evening. It is
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lipid and water soluble, readily crosses all morphological

barriers and can enter neuronal subcompartments where it

has numerous metabolic functions. Tissues throughout the

body have melatonin membrane receptors which permit

localised and differentiated responses to central melatonin

release.132 Through complex but ill-defined neurological

mechanisms melatonin promotes sleep onset and mainte-

nance.1 Sleep regulation is only one of its many functions.

There is strong evidence that melatonin assists in the

synchronisation of intracellular functions and in the

synchronisation of circadian and circannual physiology of

cells, organs, hormones, neurochemicals and other

functions.133e138 Melatonin and its by-products are protective

against oxidative/nitrosative damage due to their direct free

radical scavenging actions.139,140 They ameliorate the free

radical-mediated damage that is caused by neural toxins,

ultraviolet light, heat stress, herbicides, metals, prescription

drugs, irradiation and others.141 Dysregulation of sleep can

result in reduced melatonin production and secretion leading

to increased cellular oxidative and nitrosative stress, distur-

bance of intracellular and extracellular metabolisms and to

cognitive, behavioural and health difficulties.27,142,143 Mela-

tonin also influences neurogenesis and it is important in pre-

natal and post-natal brain and eye development.144e147 For

example, in animal studies melatonin-deficient fetuses later

exhibit reduced cerebellar size,148,149 delayed develop-

ment150,151 and abnormal neurogenesis of the hippocampal

structures.152e156 Therefore, the existing evidence suggests

that chronic circadian sleep disturbance or sleep loss in

various forms may lead to vast changes in health and in

neuronal mechanisms.141,143
9. Conclusions

During the last few years, research activities have markedly

increased in electrophysiology, anatomical studies, structural

and functional brain imaging, cellular, molecular, and genetic,

biochemical and other areas of sleepmedicine. It is important

for pediatric neurologists and physicians in other clinical

fields to be familiar with some of these advances. NREM sleep

is most important in restoring homeostatic balance following

wakefulness, whereas REM sleep provides a supportive role in

neurogenesis, synaptic activity, emotional and neuronal

development, learning and memory formation. Sleep depri-

vation adversely affects cognitive functioning, behaviours and

health.

The effects of persistent partial sleep difficulties on human

brain development have not been adequately studied; yet

chronic sleep disturbances are common, especially in children

with NDD. Children with chronic sleep difficulties, more so

when young, are deprived of quality environmental and

endogenous brain stimulation needed for optimal neuronal

development. Animal experiments unequivocally show that

sleep loss even for three or four days can adversely and

permanently affect neurophysiological functions and neuro-

genesis. Sleep deprivation, depending on the severity, leads to

genetic, cellular, metabolic, electrical, neurotransmitter and

other changes. Prolonged sleep loss causes cellular stress and

when the defence mechanisms are no longer able to cope,
permanent neuronal damage may occur. The effects of

cellular stress may be cumulative throughout life. Melatonin,

which has powerful neuroprotective properties, has a central

role in sleep deprivation since during sleep disturbances

melatonin production is often reduced and/or disturbed. The

potential adverse effects of chronic sleep disorders on the

brain development of children are generally unrecognized.

Furthermore, it is often incorrectly thought that the sleep

disturbances of children with NDD are an inevitable part of

their conditions or they will eventually outgrow these diffi-

culties, and therefore treatment is not necessary or may be

ineffective. This review summarises the increasing evidence

from various fields of neuroscience that chronic disturbances

of sleep adversely affect brain development, especially when

severe and occur during critical developmental periods.

Pediatric neurologists, the scientific community and the

public must be aware of these recent scientific developments.

Further studies are urgently required.
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